This website contains other cold fusion items.
Click to see the list of links

344) What is going on in our CMNS field?

Ludwik Kowalski
Montclair State University, Montclair, NJ, 07055
February, 19, 2008



The CMNS field continue to be active. What follows are pieces of information and comments which do not form a coherent pattern. Why are they are worth recording here? Because these pieces caught my attention; I found them interesting. The first item is a review of of a recently published book about cold fusion. It appeared in the Journal of Scientific Exploration, volume 21, no. 4, pp. 801-805. The author is Dieter Britz, he is from Denmark.

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =


1) The Science of Low Energy Nuclear Reaction: A Comprehensive Compilation of Evidence and Explanations about Cold Fusion by Edmund Storms. Singapore: World Scientific Publishing Co. Pte. Ltd., 2007. 312 pp. $71.OO (hardcover) ISBN-13978-981-270-620-1.

"Cold fusion" refers here to the claim that by simple electrolysis of heavy water with some electrolyte, the deuterium ions (deuterons) that accumulate inside palladium or some other metal can be made to fuse. This surprising claim was made by Fleischmann, Pons, and Hawkins (1989) and, almost concurrently, by Jones et al. (1989). Much has been said about this subject, which has become a scientific "affair" of sorts, with most mainstream scientists refusing to accept the reality of cold fusion, and a smallish band of researchers continuing work and indeed publishing their findings. The present author began to collect a bibliography (hereafter, the Bibliography) of the literature in 1989 (see http://www.chem.au.dk/~db/fusion ), including only papers in refereed journals, and the present count is 1367. As many as 30 books have been published on the subject. Of these, not all are notable, some being hasty productions or having clear weaknesses, but some stand out. Some of these were written by proponents of the phenomenon, and some by skeptics. Most of the books were written by people who have not themselves worked on the phenomenon, some being science journalists or enthusiasts without a scientific background.

Two books written by adherents of cold fusion stand out in that they were written by people active in "normal" science, with solid research records, and who have themselves done research on cold fusion. One of them was by T. Mizuno (1997), an electrochemist, and the other by radiochemist Edmund Storms, whose book is the subject of this review. It must be recalled that the claim of cold fusion is astonishing to anyone with a smattering of knowledge of physics. The fusion of deuterons is resisted strongly by electrostatic forces keeping these positively charged particles apart. Fusion can be achieved by heating a plasma (hot fusion), and theoretical studies of the expected rate of fusion at low temperatures, as obtains in an electrochemical cell, predict rates so low that nothing will be detected. There are, then, good reasons for being skeptical of cold fusion claims. A book such as this one, however, makes a strong case for cold fusion, not only by the results presented, but also by the impression the reader gets of the writer. Storms is a working scientist, and this shows clearly in the book. He begins with a clear statement that he is convinced of the reality of cold fusion (preferring to call it low energy nuclear reaction or LENR). He is not-like some proponents of the phenomenon-oblivious to the weaknesses of many claims, that is, he shows the proper critical attitude of a normal scientist and will (mostly) not accept unsound evidence. Much shoddy work has been done in the field, but after eliminating this, some evidence remains that leaves the skeptic in a quandary; the phenomenon is unlikely to be real for many reasons, but there is much evidence nevertheless that it may be. Storms does his best to point out such evidence based on his own work. The book contains an interesting account of his own work, and to a practicing scientist, he conveys a true picture of science as it is done: it rings true to someone who is a working scientist.

The book is divided into ten chapters and six appendices. It begins with an overview, a brief history of the field and (Chapter 3) a description of Storms's own work. The book's strength lies here, and the scientific reader will feel at home. Chapter 4 outlines what is known or believed; Chapters 5 and 6 focus on where cold fusion might occur and how perhaps to affect or even initiate it by means of experimental parameters. Chapter 7 considers fusion products and their detection, and, in the last chapters, Storms looks at some theories, the future of the field, and, in Chapter 10, provides a brief summary. Each chapter has its own bibliography, with Chapter 4 having a massive 646 citations.

The claims by Fleischmann, Pons, and Hawkins and of Jones et al. immediately engendered an embittered controversy between the "believers" and the "skeptics", with arguments and evidence not always strong on either side. In general, one should be wary of blank pronouncements by scientists that something is impossible, and as Storms points out, although there is as yet no good theory of cold fusion, the experimental evidence is not easy to dismiss (in his view, it proves the phenomenon real beyond doubt). As mentioned above, the Bibliography has over 1300 entries. Compared with other fields that appeared around the same time, such as high temperature superconductivity, however, this is not a large number. The Bibliography also shows that the publishing rate rose sharply initially, but fell roughly exponentially thereafter, similar to the polywater affair (Franks, 1981), a curve that has been likened to the course of an epidemic (Bennion & Neuton, 1976). Many journal editors flatly refused papers on cold fusion, and some referees probably rejected papers not so much on the basis of the evidence presented, but on the basis that cold fusion simply must be an error. It must also be said that many cold fusion papers submitted (and published) have been of poor quality and deserved to be rejected. Storms agrees with this. The result has been that in recent years, although some work is still appearing in mainstream serious journals, most work now appears in enthusiast journals, where refereeing probably is not very strict. If these articles were counted (which they are not in the Bibliography), then several thousand papers have been published. Storms himself has published some of his work in these journals, no doubt tired of unfair rejections by the normal journals.

When two deuterons fuse (against a strong electrostatic barrier), there are three branches along which the reaction can proceed, two of them the most probable. One branch leads to tritium and a proton, the other to helium-3 and a neutron, and the third branch, normally occurring with a frequency of only 10^-7 that of the other two, to helium-4 and highly energetic gamma emission. In all cases, the end result is particles carrying extra energy corresponding to lost mass to be dissipated in various ways. This all happens in "normal", that is, hot, fusion. Skeptics argue that all emissions must be present, while proponents point to one or two of them as proof, or they say that the process may not be the fusion of deuterons, but some "hitherto unknown nuclear process" (Fleischmann Pons, & Hawkins, 1989). They insist that experimental observations are paramount, and the lack of theory will be made up later. Storms takes this view, hence his use of "LENR".

Storms' own work concentrates on tritium production and "excess heat". Storms was ideally placed at the Los Alamos National Laboratory (LANL) to detect tritium. When a solution of an electrolyte in heavy water is electrolysed at length, deuterium gas is given off but also some tritium, contained as an impurity in the heavy water (and perhaps also in the palladium). Storms is careful to account for these sources. His findings are interesting: excess tritium appears first in the electrolyte, not in the effluent gas, indicating that it is produced at the palladium electrode. Storms was careful to perform control experiments aimed at eliminating environmental effects (at LANL, there might occasionally be tritium in the air) and convincingly shows that they were indeed accounted for. Similar results were obtained by Will, Cedzynska, & Linton (1993), equally competently obtained, and the skeptic is hard put to reject these results.

Excess heat is measured with a calorimeter. There is current passing through an electrochemical cell, with a voltage across it, producing an input power, and the electrolysis reaction absorbs some of this power at a well-known rate. Effluent deuterium and oxygen might carry off some heat, and heat is both radiated and conducted away from the cell. To keep track of all this is not trivial, and Storms became expert in calorimetry over the course of years, as problems were found, some of them by skeptics and addressed by him, carefully doing control experiments to assess the magnitude of interference effects. One of them is the way the temperature inside the cell is measured. There may be temperature gradients inside the cell, and this problem can be overcome by a better calorimeter design, as was done by Storms. If in the accounting of the known input and the measured output powers there is an excess, this indicates the presence of some phenomenon producing heat. One problem is the irreproducibility of the effect; only some electrodes show it and not all the time. This is one of the strong points that skeptics make. A new effect must be reproduced by others, and this has not been done to the skeptics' satisfaction, even after almost 20 years. Reproducibility can only be achieved, however, when we understand all the factors at work, which is not the case here, so irreproducibility itself does not invalidate cold fusion. Needless to say, Storms tried many different variables: various sources of the palladium, how best to vary current with time, how best to load the palladium with deuterium, what loading degrees are needed, and surface treatment of the metal before the experiment. The results do not yet give a very clear picture.

So the book makes a good case for cold fusion. There are some weaknesses. Some of the figures are poorly done, and the text is often awkward. Some expert criticism of Storms' calorimetry (Shanahan, 2006) is not mentioned, and there is some imbalance in attribution: to some extent, The work by Jones's team is reemphasized in favor of that of Fleischmann and Pons's team. Storms is not good especially with foreign names, mangling some of them, and Kirk Shanahan, one of his staunch critics, appears as "Kurt Shanahan" in the Index. Storms suggests the fusion of up to six neutrons with some nuclei, which will surprise many. The term "enthusiast" applies to Storms. The word "amazing" is seen six times in the book, and his critical attitude does seem to lapse at times. For example, he appears to accept what has been called "biological fusion" (Kervran, 1972), which is even less likely to be real than cold fusion, and even suggests that it might be behind spontaneous human combustion; and he also accepts claims by Mills & Kneizys (1991) of electron orbitals of the hydrogen (or deuterium) atom below the ground level, although here Storms appears to be a little skeptical, admitting that there is a lack of theory (which can equally well be said of cold fusion). In Chapter 9, he writes "... the skeptics went to war- a war they have now lost". In the Preface, he writes that cold fusion has now been proved. Many would disagree and remain unconvinced. So, the book is not n neutral on the subject. Nevertheless, these weaknesses are comparatively minor and do not detract from the major message of the book, the rather solid experimental evidence of some exotic process taking place, from a careful and self-critical researcher.

What then is the bottom line? This writer is still agnostic with respect to cold fusion because even a thorough worker like Storms has not succeeded in demonstrating the effect at will. This is not to say that we can dismiss cold fusion but simply that we must wait for evidence so convincing that even skeptics must accept it as real. If it indeed is real, then it is subject to parameters that as yet elude most workers in the field. Other newly discovered phenomena have been irreproducible for some time (albeit rarely for 18 years as here) and this alone does not prove it to be false. We shall have to wait and see. The Storms book certainly is recommended reading, for both skeptics and proponents.

DIETER BRITZ
Chemistry Dept. University of Aarhus Aarhus, Denmark britz@chem.au.dk

References
Bennion, B. C., & Neuton, L. A. (1976). The epidemiology of research on "anomalous water." Journal of the American Society of information Science, 27, 53.

Fleischmann, M., Pons, S., & Hawkins, M. (1989). Electrochemically induced nuclear fusion of deuterium. Journal of Electronalytical Chemistry, 263, 308. Erratum, ibid, 263, 187, adding Hawkins' name.

Franks, F. (1981). Polywater. MIT Press.

Jones, S. E., Palmer, E. P., Czirr, J. B., Decker, D. L., Jensen, G. L., Thorne, J. M., Taylor, S. F., & Rafelski, J. (1989). Observation of cold nuclear fusion in condensed matter. Nature, 338, 737.

Kervran, L. (1972). Biological Transmutations. Brooklyn, NY: Swan House Publishing Co. (Collected and translated from the French by Abehsera, M.)

Mills, R. L., & Kneizys, S. P. (1991). Excess heat production by the electrolysis of an aqueous potassium carbonate electrolyte and the implications for cold fusion. Fusion Technology, 20, 65.

Mizuno T. (1998). Nuclear Transformation: The Reality of Cold Fusion. Concord, NH: Infinite Energy Press; translated by Rothwell, J., from the Japanese edition, Kogakusha Publ. (1997).

Shanahan, K. L. (2006). Reply to "Comments on papers by K. Shanahan that propose to explain anomalous heat generated by cold fusion", E. Storms, Thermochim. Acta, 2006. Thermochimica Acta, 441, 210.

Will, F. G., Cedzynska, K., & Linton, D. C. (1993). Reproducible tritium generation in electrochemical cells employing palladium cathodes with high deuterium loading. Journal of Electroanalytical Chemistry, 360, 161.

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =



2) Faradic efficiency thread on CMNS list for researchers (Inserted on 3/5/08)
I am neither chemist nor electrochemist. But two messages under this thread are worth recording. One was from our electrochemistry and calorimetry expert, Mike McKubre and one from the author of the above review, Dieter Britz.

3) On 3/4/08 Mike wrote: This debate is diverging. I suggest we propose a new rule to encourage convergence. Let's call it: QUANTIFICATION.

A lot of the more subtle condemnation of cold fusion is disguised - as in politics - behind unspecified doubts concealed in the implication that electrochemistry is "too complicated", contains "unknown or mysterious" variables, somehow an "art not a science" --- you know, sort of like witchcraft. IT IS NOT! Let us role back this deception, I suspect unsuspectingly practiced by some on this list. The way forward is NUMBERS!

Under this rule new material can be entered into the discussion if it is clear the the proponent has made numerical estimates of the effect he proposes. I am not picking on Dean, Dieter or Scott but am going to use their recent input as examples of how things might change (I argue for the better) with the influence of such a rule.

Lithium forms several substitutional alloys with palladium. The reaction enthalpies can easily be found by anyone with access to a library or internet. Let's take (for example) the most famous experiments of F&P and calculate how much enthalpy could be released (you need the volume of electrolyte times the Li concentration, the putative phase formed and the Li heat of solution times the volume of Pd). If that number is small compared with the excess energy observed then we can stop. If not then we need to dig a little deeper and quantify the extent to which Li can deposit in aqueous electrolysis and how far it can diffuse into the Pd*. I am not going to do it for you - but I recommend the exercise.

Scott asked about electrolysis current below the formal breakdown potential. We have gone round this loop before and I took some trouble to answer it in terms of electrochemical kinetics and thermodynamics. I don't want to discourage debate but I do want to encourage learning. To make the question and answer quantitative one needs to look at the solubility and diffusion of molecular D2 and O2 in the solution (water) and recognize that - if the solution contains no dissolved D2 or O2 then the breakdown of water can occur at an (unspecified) low voltage. Ficks first law, the diffusion coefficient and the diffusion layer thickness will get you near-quantitative answers. The answer to this question will also help with the answer to the next.

I was surprised to see Dieter as a proxy for Shanahan's straw man make a Hillary-like** statement that he "I don't know whether this happens or not, but that is his argument." Why don't you know? If you don't know, why introduce the unsupported argument of another? You have all the expertise to do the experiment and access to a good library. Information on the catalyzing power of Pt and Pd under a monolayer or more of water is readily available as this is very important in fuel cells and heterogeneous catalysis. I am cheating a little bit here as my electrochemistry group in 1989 was studying fuel cell electrode kinetics, and happened to have been situated in the middle of a world famous group studying all sorts of heterogeneous catalysis. With a simple walk across the hall I was able to learn that the catalyzing power of wet Pt or Pd was about the same as pyrex (i.e. nil). Even so we still measured and studied the effect and ran closed cells to avoid it.

But the information is out there for all. If you don't know how to frame the calculation then you are probably not going to understand (or therefore accept) the answer. We need to commit to work to make progress, not endlessly answer 1989 questions. As proponent and so far sole supporter of the QUANTIFICATION rule I pledge to not introduce new matter except with quantification and not respond to new matter on this topic unless it is quantitatively bounded. . . .

4) On 3/5/08 Dieter wrote:
McKubre wrote “This debate is diverging. I suggest we propose a new rule to
encourage convergence. Let's call it: QUANTIFICATION. A lot of the more subtle condemnation of cold fusion is disguised -as in politics - behind unspecified doubts concealed in the implication that electrochemistry is "too complicated", contains "unknown or mysterious" variables, somehow an "art not a science" --- you know, sort of like witchcraft. IT IS NOT! Let us role back.”

I hope you are not suggesting that I have some sort of agenda, other than providing information where I can. I do not. I am neutral on the subject, and would indeed be pleased if CNF turned out to be a real effect. But it has to be proven, not just assumed because it's nice thought.

He also wrote “Lithium forms several substitutional alloys with palladium. The reaction enthalpies can easily be found by anyone with access to a library or internet. Let's take (for example) the most famous experiments of F&P and calculate how much enthalpy could be released (you need the volume of electrolyte times the Li concentration, the putative phase formed and the Li heat of solution times the volume of Pd). If that number is small compared with the excess energy.”

That is not necessary, because we know that very little of that Li is deposited; this has been measured to be at most 1 atomic% in a very thin layer near the Pd surface. No sausage there. There have been suggestions that the redissolution of the Li might cause heat bursts, but this will not happen during electrolysis, so that is not on either.

He also wrote “I was surprised to see Dieter as a proxy for Shanahan's straw man
make a Hillary-like** statement that he "I don't know whether this “

I am not a straw man for anybody, mate. I was just thinking of all possible side reactions that might take place, in the framework of faradaic efficiency, and this was one of the suggestions. You are echoing somebody else here, who insists that I have this anti-CNF agenda. I repeat, I do not.

I like people to get their facts straight. I don't have them all myself, but when I have some, or some ideas, I point them out. That makes me unpopular on both sides of this debate. I got into Morrisons's bad books by demolishing his "cigarette lighter effect" which he thought at one time would explain excess heat. My agenda is for people to believe what they believe, for the right reasons. I do think I have made it clear the last week or so, that I do not believe that faradaic efficiency less than 100% is the cause of excess heat.

5) On Mar 5, 2008, Mike McKubre wrote:
“Dieter Britz wrote: I am not a straw man for anybody, mate. I was just thinking of all possible side reactions that might take place, in the framework of faradaic efficiency, and this was one of the suggestions. You are echoing somebody else here, who insists that I have this anti-CNF agenda. I repeat, I do not.”

I am not sure I qualify as your mate, but hopefully no hard feelings. I am happy to consider all plausible reactions. What distinguishes plausible from possible is quantification. Actually I was not echoing any other comment that you have an anti-CNF bias. I have never heard that and have seen no evidence of it. In fact I believe the opposite and am trying to extract maximum benefit for the community.

He also wrote “My agenda is for people to believe what they believe, for the right reasons. I do think I have made it clear the last week or so, that I do not believe that faradaic efficiency less than 100% is the cause of excess heat.”

That last clause was not clear - at least to me. From someone with your background and credentials that conclusion is significant. What I objected to was you raising Shanahan's dead horse - without doing the experimental or theoretical walk through - apparently (now) when you did not believe it was relevant to our experiments. Of course you are free to contribute whatever you want - it will all be good. My point is that divergence promotes confusion.

6) On March 6 Dieter wrote:
In this case, somebody asked, in effect, what is faradaic efficiency, and I was trying to think of all possible effects that might reduce that. Then someone mentioned oxygen being reduced at the cathode, and hydrogen oxidized at the anode. Some appear to believe that this is what Kirk Shanahan proposes, and to counter this I added what he actually does propose. Even had I been aware that this has been experimentally tested and discounted (which I was not), I would have felt bound to mention it, to avoid this misunderstanding of what Kirk is saying. I like this forum because it seems to me that we can have rational arguments here, without excess heat. I hope it stays like that.

7) My comment (3/6/08)
Messages keep popping up under this thread. That is not my field. But I am happy to see disagreements among subscribers to the CMNS list. That is a sign of health. How different is it from what I often hear from people who say that they already know (since early 1990's) that “cold fusion” is pseudoscience. These people do not want to “waste time” on reading reports from ongoing experiments.

8) CR-39 work
My numerous attempts to get information about recent CR-39 findings (of SPAWAR team and of those who cooperate with SPAWAR) were not successful. The seem to prefer not to share preliminary results on this list (or with me via private messages), as they did so generousely before Catania conference. Why is it so? But I am corresponding privately with Richard Oriani. He is making progress in trying to publish a paper on his most recent results (tracks originating deep inside CR-39). I am affraid that sharing what I know here might interfere with the process. But I do plan to write about this (with Richard's permission) later.

9) ICCF14 The next CMNS conference will take place this summer in Washington DC. The exact date will probably be announced shortly. I expect the ICCF14 to be dominated by experimental reports from Iwamura et al. (evidence for transmutation) and from Storms et al. (evidence for nuclear activity during glow discharge). Also by the report from Boss and from Oriani (evidence for nuclear particles resulting from a process induced by electrolysis).

This website contains other cold fusion items.
Click to see the list of links